2303.05186v1 [cs.LG] 9 Mar 2023

arXiv

A Framework for History-Aware Hyperparameter Optimisation
in Reinforcement Learning

Juan Marcelo Parra-Ullauri
Chen Zhen
Antonio Garcia-Dominguez
Nelly Bencomo
Changgang Zheng
Juan Boubeta-Puig
Guadalupe Ortiz
Shufan Yang

ABSTRACT

A Reinforcement Learning (RL) system depends on a set of initial
conditions (hyperparameters) that affect the system’s performance.
However, defining a good choice of hyperparameters is a chal-
lenging problem. Hyperparameter tuning often requires manual or
automated searches to find optimal values. Nonetheless, a notice-
able limitation is the high cost of algorithm evaluation for complex
models, making the tuning process computationally expensive and
time-consuming. In this paper, we propose a framework based on
integrating complex event processing and temporal models, to al-
leviate these trade-offs. Through this combination, it is possible
to gain insights about a running RL system efficiently and unob-
trusively based on data stream monitoring and to create abstract
representations that allow reasoning about the historical behaviour
of the RL system. The obtained knowledge is exploited to provide
feedback to the RL system for optimising its hyperparameters while
making effective use of parallel resources. We introduce a novel
history-aware epsilon-greedy logic for hyperparameter optimisation
that instead of using static hyperparameters that are kept fixed for
the whole training, adjusts the hyperparameters at runtime based
on the analysis of the agent’s performance over time windows in
a single agent’s lifetime. We tested the proposed approach in a 5G
mobile communications case study that uses DQN, a variant of RL,
for its decision-making. Our experiments demonstrated the effects
of hyperparameter tuning using history on training stability and
reward values. The encouraging results show that the proposed
history-aware framework significantly improved performance com-
pared to traditional hyperparameter tuning approaches.

ACM Reference Format:

Juan Marcelo Parra-Ullauri, Chen Zhen, Antonio Garcia-Dominguez, Nelly
Bencomo, Changgang Zheng, Juan Boubeta-Puig, Guadalupe Ortiz, and Sh-
ufan Yang . 2023. A Framework for History-Aware Hyperparameter Op-
timisation in Reinforcement Learning. In Proceedings of ACM Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(Conference’17). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Reinforcement Learning (RL) is a sub-field of Machine Learning
with a great success in applications such as self-driving cars, in-
dustry automation, among many others [26]. In RL, autonomous
agents learn through trial-and-error how to find optimal solutions
to a problem [26]. RL algorithms have multiple hyperparameters
that require careful tuning as it is a core aspect of obtaining the
state-of-the-art performance [8].

The search for the best hyperparameter configuration is a se-
quential decision process in which initial values are set, and later
adjusted, through a mixture of intuition and trial-and-error, to
optimise an observed performance to maximise the accuracy or
minimise the loss [8]. Hyperparameter Optimisation (HPO) often re-
quires expensive manual or automated hyperparameter searches in
order to perform properly on an application domain [29]. However,
a noticeable limitation is the high cost related to algorithm evalua-
tion, which makes the tuning process highly inefficient, computa-
tional expensive, and commonly adds extra algorithm developing
overheads to the RL agent decision-making processes [5, 8, 29, 30].

The full behaviour of complex RL systems often only emerges
during operation. They thus need to be monitored at runtime to
check that they adhere to their requirements [23]. Event-driven
Monitoring (EDM) is a common lightweight approach for monitor-
ing a running system [10]. Particularly, Complex Event Processing
(CEP) is an EDM technique, for capturing, analysing, and correlat-
ing large amounts of data in real time in a domain-agnostic way [12].
The present paper proposes the use of CEP to quickly detect causal
dependencies between events on the fly by continuously querying
data streams produced by the RL system in order to gain insights
from events as they occur during the execution of the RL agent
which is crucial for HPO [5].

CEP provides the short-term memory needed to analyse the sys-
tem behaviour on pre-defined time-points or limited time-windows.
However, it is debated that long-term memory is also required when
analysing the effects of HPO on the RL agent to find optimal per-
formance evolved on past behaviours. History-awareness requires
node-level memory and traceability management facilities to allow
the exploration of system’s history. Temporal Models (TMs) are seen

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

to tackle these challenges [6]. TMs offer storage facilities that al-
lows time representation using a temporal database (TDB) [20, 21].
In this paper, a TDB supports the storage of massive amounts of
historical data, while providing fast querying capabilities to support
reasoning about runtime properties in the monitored RL agent.

In this paper, we propose a framework based on CEP ans TMs
that can be reused for different RL algorithms. The proposed com-
bination allows the detection of situations of interest at runtime
and permits tracing the RL agent history to enable the short and
long term memory required to analyse the impact of HPO. The
framework uses a formal defined structure to trace data streams
produced by the RL agents, process them and provide feedback for
HPO. In addition, we present a novel history-aware epsilon-greedy
logic for HPO that is implemented using the components of the
proposed framework. This logic tunes the hyperparameter concur-
rently while acting greedily under certain circumstances, but also
exploring the hyperparameter value-space with an e probability
in order to escape local maximums. The HPO occurs while the
agent is learning, which turns to be more efficient than using static
hyperparameters during the training process and having to update
them on multiple agent’s lifetimes [29, 30].

In order to test the feasibility of the proposed framework, Deep
Q-Network (DQN) [26], a popular RL algorithm, was applied to
a case study on the next generation of mobile communications
from [31]. The experiments analysed the effects of the proposed
history-aware approach for HPO during the RL agent training,
and compared the results with traditional hyperparameter tuning
approaches. Our experiments focused on updating the discounting
factor hyperparameter at runtime for a single agent’s lifetime, using
these different techniques.

The rest of the paper is organised as follows. Section 2 provides
a description of the core concepts required to understand this paper.
Section 3 introduces our approach. Experiments and results are
presented in Section 4. The discussion is presented in Section 5.
Section 6 compares the presented work with current state of HPO
in RL. Finally, Section 7 presents conclusions and future directions.

2 BACKGROUND

2.1 Hyperparameter Optimisation in
Reinforcement Learning

In RL, an agent tries to maximise the optimal action-value function
described as the Bellman Optimality Eq. [26]:

Q*(s,a) = B{ry41 +y * maxy Q" (st11,a’)|st = s,ar = a} (1)

where E represents the expected sum of future rewards charac-
terised by the hyperparameter y, which is the discounting factor [26].
A reward r; that occurs N steps in the future from the current state,
is multiplied by yN to describe its importance to the current state.
As shown, defining the right y and additional hyperparameters
through HPO is key to deliver optimal solutions in RL.

The most basic way of HPO is manual search, which is based
on the intuition of the developer [5]. Once the system execution
has finished, the verification of convergence is reviewed. More
sophisticated HPO approaches include i) Model-free Blackbox Op-
timisation (MBO) and ii) Bayesian Optimisation (BO) [5]. Grid and
random search are part of i). In grid search, the user defines a set

Juan Marcelo Parra-Ullauri, Chen Zhen, et al.

of hyperparameter values to be analysed and the search evalu-
ates the Cartesian product of these sets. Random search samples
configurations at random until a certain budget for the search is
exhausted. [5]. Regarding ii), BO iteratively evaluates a promising
hyperparameter configuration based on the current model then
updates it trying to locate the optimum in multiple agent’s life-
times. However, performing these techniques is time consuming,
computationally expensive and requires expert knowledge [4].

For the reasons mentioned, the introduction of an automated
hyperparameter search process is key for the continuing success
of RL and is acknowledged as the most basic task in automated
machine learning (AutoML) [5]. In this work we focus on MBO
for a single agent’s lifetime, which is claimed to be more efficient
than having static hyperparameters during the training process
and updating them in multiple agent’s lifetimes [29, 30].

2.2 Temporal Models

TMs go beyond representing and processing the current state of
systems [6]. They seek to add short and long-term memory to
models through the use of temporal databases [15]. Examples of
temporal databases used for TMs, are Time Series Databases (TSDB)
and Temporal Graph Databases (TGDB) [15, 21]. Each attribute to
be monitored in a running system can be considered as a time
series: a sequence of values along an axis [3]. TGDB extend this
ability to track the appearance and disappearance of entities and
connections [7].

TGDBs record how nodes and edges appear, disappear and change
their key/value pairs over time. Greycat [7] is an open-source TGDB.
Nodes and edges in Greycat have a lifespan: they are created at a
certain time-point, they may change in state over the various time-
points, and they may be “ended” at another time-point. Greycat
considers edges to be part of the state of their source and target
nodes. It also uses a copy-on-write mechanism to store only the
parts of a graph that changed at a certain time-point, thus saving
disk space. In this work, TMs build on top of Greycat TGDB, allow
accessing and retrieving causally connected historical information
about runtime behaviour of RL agents.

2.3 Event-driven Monitoring

EDM approaches are commonly designed to monitor system events,
processes and handle them in the background without interfering
with the main system’s execution [18]. Moser et al. identified in [18]
four key requirements for EDM: i) it should be platform agnostic
and unobtrusive, ii) it should be capable of integrating monitoring
data from other subsystems, iii) it should enable monitoring across
multiple services and instances, and iv) it should be capable of
unveiling potential anomalies in the monitored system. CEP is a
cutting-edge EDM technology that has been widely used to address
these requirements [12].

CEP provides real-time analysis and correlation of large volumes
of streaming data in an effective and efficient manner with the
aim of automatically detecting situations of interest in a particular
domain (event patterns). The patterns to be detected have to be de-
fined and deployed into a CEP engine, i.e. the software responsible
for analysing and correlating the data streams. Each CEP engine

A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning

@ Reinforcement Learning /@ MQTT h ® CEP Engine
Broker
Agent ==>|| Event Event
State | policy || Action &am| | Patterns || Handler
Select Action = RL Traces
|| Value Function = < o) @® Temporal Model
Calculated reward History-
Awareness |gm)| | Runtime A
Reward "
Model | ¢
= (=
Feedback —
Hyperparameters £} Listener | TGDB
—

Figure 1: CEP and TMs for Hyperparameter Optimisation

provides its own Event Processing Language (EPL) for implement-
ing the patterns to be deployed. Among the existing CEP engines,
we opted for Esper!, a mature, scalable and high-performance CEP
engine. The Esper EPL is a language similar to SQL but extended
with temporal, causal and pattern operators, as well as data win-
dows. The present document proposes to leverage the power of CEP
to detect temporal and causal dependencies between events and to
pre-process data streams, in order to gain insights from events as
they occur during the training of an RL agent.

3 HISTORY-AWARE HYPERPARAMETER
OPTIMISATION FOR RL

This section presents our proposed framework integrating CEP
and TMs for HPO. Additionally, the section also describes a novel
history-aware epsilon-greedy logic that will be implemented using
the referenced framework.

3.1 A Software Framework combining CEP and
TMs for HPO

RL involves challenging optimisation problems due to the stochas-
ticity of evaluation, high computational cost and possible non-
stationarity of the hyperparameters [30]. Therefore, the efficient
continuous monitoring and dynamic verification of internal opera-
tions and parameters of the RL agent and its interactions with the
environment over time are required. We propose the use of CEP
for short-term analysis and TMs for navigation through the system
history to provide feedback to the RL algorithm. Fig. 1 shows the
proposed framework:

e The RL algorithm (1) runs mostly independently from the rest
of the system, while publishing data streams with logging
information into an “RL Traces” topic created in a Message
Queuing Telemetry Transport (MQTT) broker. The algo-
rithm is subscribed to a “Feedback” topic, which will contain
suggestions for hyperparameter change.

e The MQTT Broker (2) is the communication hub for the
architecture, acting as an event bus. It is responsible for
loosely integrating the other components through the use
of topics: components can publish events into a topic, or
subscribe to updates about that topic.

https://www.espertech.com/esper/

Conference’17, July 2017, Washington, DC, USA

] Log L]

= timeslicelD : EString
= 9

o actions : Action

& measures : Measure [0..*] observations

[0..*] agents [0..*] decisions

E Agent ﬂ| |

[Decision L] [Observation L]

© name : EString © name : EString o description : EString

1 probability : EDouble = 0.0
& measurements : Measurement

‘ [0..1] agent W 4

[0..*] decisions .
[0..1] agent] [0..*] observations

_u RLObservation
[0..*] currentRewards

J
[[RLDecision]

© name : EString
= value : EDouble = 0.0

J
I [0..*] states I[O.,*] qvalues
‘ [Rustate | | [qualue |

Figure 2: Class diagram for the RL extensions to the core
metamodel used to record system history. Imported core el-
ements are marked with an arrow.

» actionTaken : Action ~|[01] Observation

{ [RLAgent]
(

© name : EString © value : EDouble = 0.0

= action : Action

T[O.J] current

e The CEP Engine(3)is responsible for filtering and correlating
data streams in the form of simple events coming from the
RL algorithm into semantically richer complex events. It sub-
scribes to the “RL Traces” topic to obtain those simple events,
and it pushes complex events into the “History-Awareness”
topic.

e The Temporal Model (4) uses the complex events from the
“History-Awareness” topic to construct the next version of
the high-level model of the RL agent’s state, which is used to
update the TM. A novel graph listener component is notified
about the changes, which applies the HPO logic (see Sec-
tion 3.2) to push any feedback on the current hyperparameter
values into the “Feedback” MQTT topic.

TMs are conceptually structured according to a metamodel de-
signed to record a Log of Decisions made by Agents, based on Obser-
vations about the environment, and including a set of Measurements
of interest, according to various Measures. The metamodel is di-
vided into two parts: the above concepts are defined into a core
package from [omitted], and concepts that are specific to RL are
split into its own package (see Fig. 2), which imports elements from
the core package. The RL package provides a specialised RLAgent
which keeps track of the RLState that can be observed in the envi-
ronment, an RLDecision which tracks the QValues of each available
action, and an RLObservation which tracks the current state before
the action was taken, and the current Reward values.

3.2 History-aware epsilon-greedy logic for
HPO

In RL, the N-dimensional hyperparameter configuration space is
defined as A = A1 X ... X AN and a vector of hyperparameters is
denoted by A € A. Let’s denote the RL algorithm as ® and @, the
algorithm instantiated to a vector of hyperparameters A. Let us
define the objective function to maximise the value of a reward
function R. Then, we define the HPO problem of a ® given the

Conference’17, July 2017, Washington, DC, USA

environment E at time T as finding the optimal hyperparameter
vector A*:
A" = argmax R(®), E, T) (2)
AeA

where R(®), E, T) measures a reward value generated by the
algorithm @ under a configuration of the A hyperparameter while
interacting with the environment E at time T.

Now we can introduce our history-aware epsilon-greedy ap-
proach. RL is episodic, with multiple iterations i € I performed
within each episode e € E [26]. In this context, let us define the
value of R at the instant t; after @) has interacted with the environ-
ment E as the reward r; that the agent obtained by performing an
action a; and arriving to the state s;. Thus, the value of our reward
function by iteration is denoted by R;(t;, A) = ry,. Consequently,
the reward function by episode is defined by:
S Ri(t)
-1 ®

After stated our reward function by episode, we define the criterion
for analysing the history. In other words, how long back are we
going to look when deciding to change a hyperparameter. With this
purpose, we introduce the concept of time-windows to the logic. A
time-window w € W consists of x € R episodes e where x is the
length of the time-window. Then, the value of our reward function
by time-window is denoted by:

Re(te, A) =

e+x—1

Roin(t) = 2 Relln?) o
Eq. 4 defines the time frame when the monitoring process is
taking place. The next step is to define the criterion that would lead
to a hyperparameter update. The criteria selected is the stability of
the reward value. We analyse the distance of the reward function
by episode R, to the mean of the time-window Ryi,. If the value is
below a defined threshold thg;,p. € R for all the values within the
time-window, we induce that the reward value has stabilised within
a range and a possible hyperparameter update will be performed.

Formalising this as a Boolean conjunction we have:

N\ (Rt 1) = Ruin(tw DI < thrapie) ()

jeleet+x)

where R,,in is the reward function value for the time window at
timew =e+x — 1.

We have emphasised the word possible for a change in A, as
stability won’t necessarily mean that the agent has reached its
maximum performance under the current conditions. Let’s consider
the example when our optimiser system has observed the following
set of R, under the same conditions @, R : {1,2,3,4,5,6}. We
define a time-window length of 3 episodes (x = 3) and a stability
threshold of 2 (thg;apie = 2). Thus, wi = {1,2,3}, wa = {4,5,6},
Rwin, = 2 and Ryin, = 5. As a result, the Boolean conjunction
for wy will be true. This would mean that the system requires
a hyperparameter change. However, under the same conditions
®,, the system would have kept improving its performance as it
is shown in wy and Ryin,. Therefore, an additional condition is
necessary to define when a hyperparameter tuning is required.

We introduce maxR; as the maximum known value of R,,in up
to the time-point t and it is initialised as 0. Similarly, we introduce

Juan Marcelo Parra-Ullauri, Chen Zhen, et al.

maxA; as the value of A that has produced maxR; up to the time-
point ¢t. We then define the main condition for hyperparameter
tuning HPO(A) and it is described as follows:

At,
with)
if Ryin, > maxR;

(6)

maxAy «— As
HPO(}) = maxR; «— Ruvin,

£, }

where HPO(A) is equal to A; iff the current value of Ryyip,
is greater than the maximum known value of maxR; at time ¢.
This would imply that the current value of our R function has
increased from the previous maximum known and therefore the
current configuration ®,, should be kept as the system is still ‘learn-
ing’. Correspondingly, the current value of R,,;n, would become
the new maximum known value of maxR; (maxR; — Ravin,)-
In the case that the previous condition for HPO(A) is not met
(Rwin, > maxR;), a hyperparameter tuning is required and will be
analysed by our epsilon-greedy function £(A).

Our optimiser would examine £(A) iff and only iff the follow-
ing conditions are met: i) R is stable for a time-window w (Eq. 5),
and ii) the current value of Ryip, is less than the previous maxi-
mum known value of R, max®R;. These conditions mean that the
system is stable (regarding to rewards observed) and on a sub-
optimal configuration of ®,, (on reference to maxR;). Therefore,
a different vector of hyperparameters A should be explored. The
criterion for selecting the next A is a variation of the well-known
epsilon (€)-greedy policy for balancing exploration and exploitation
in RL [26]. The optimiser will explore the hyperparameter value-
space with a probability of €, otherwise it will exploit the known
best configuration (maxA;). Thus, it would act greedily. Eq. 8 shows
the proposed epsilon-greedy function &(A).

otherwise

maxAs, } with probability 1-¢

random A € A,

&) = or)
A+c, with probability e

A—c,

In addition of exploring randomly the value-space with a prob-
ability €, we have introduced supplementary conditions that will
help the optimiser for deciding if the current value of the hyperpa-
rameter to which it is performing the tuning should be increased
to A + ¢ or decreased to A — ¢, where c is a user-defined constant.
These conditions give hints to the optimiser about the direction in
the value-space where better performance is achieved.

Putting everything together, given a RL algorithm @ that inter-
acts with an environment E at time ¢ € T with an initial hyperpa-
rameter configuration A € A such as @, its configuration will be
analysed and possibly updated based on HPO(A) when meeting the
stability condition on a time-window from (5). The update based
on our e-greedy function (1) will only take place if the observed
value of our R for such a time-window is less than the best known

A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning

value of R, maxR. The advantage of the proposed approach is that
exploration actions are only selected in situations when the sys-
tem has stopped learning under the defined conditions, which is
indicated by analysing the history of R.

Finally, the found optimal hyperparameter vector A* for a lifetime
of the RL agent, corresponds to the final value of maxA:

A" — maxA 8)

This history-aware epsilon-greedy logic for HPO in RL has been
implemented using the architecture in Section 3.1, exploiting the
benefits of CEP and TMs.

4 EXPERIMENTS AND RESULTS

4.1 System under study: Airbone base stations

In order to demonstrate the feasibility of the proposed architecture,
this section presents its implementation for a case study from the
domain of mobile communications. In this case study, Airborne Base
Stations (ABS) use DQN to decide where to move autonomously
in order to provide connectivity to as many users as possible. The
5G Communications System Model performs the necessary calcula-
tions to estimate the Signal-to-Interference-plus-Noise Ratio (SINR)
and the Reference Signal Received Power (RSRP) to defined if a user
is connected or not [31].

Developed by DeepMind in 2015, DQN has produced some break-
through applications able to solve a wide range of Atari games even
more efficiently than humans [17]. In contrast to tabular RL ap-
proaches, DQN avoids using a lookup table by instead predicting
the Q-value of the current or potential states and actions using ar-
tificial neural networks (NN) or deep learning networks [26]. This
Q-function (see Eq. 1) provides the expected discounted reward
that results from taking an action a; in the state s; and policy 7 is
followed. The hyperparameters when training a DQN agent include
the numbers of episodes and neurons, learning rate, exploration
rate, discount factor, among others.

4.2 Experimentation: Scenario

For the current implementation, we decided to study the impact of
optimising the discount factor as the key element in the Bellman
equation after a non-exhaustive manual hyperparameter search.
The discount factor determines how much the RL agents cares about
rewards in the distant future relative to those in the immediate
future [26]. The hyperparameter vector is expressed as follows:

Ay,)

where y represents the hyperparameter to be optimised (i.e. dis-
count factor) and x the hyperparameters that remain fixed.

With these preliminaries, different experiments using the pro-
posed framework were performed under the same scenario. It con-
sisted of a training round (i.e. a single lifetime) of 100 episodes and
1000 steps for a set of 4 ABS with 1050 users scattered on a X-Y
plane. The ABS try to maximise the number of users connected
by performing actions (i.e. moving on different directions) and cal-
culating the SINR to users on a collaborative fashion. Our main
goal was trying to solve Eq. 2. With this purpose, two different
experiments were defined:

Conference’17, July 2017, Washington, DC, USA

H Approach Yo Tuning criteria H
Manual setting 0.9 static
Grid search 0.9 updated every 10 episodes
Random search random updated every 10 episodes

Bayesian Optimisation 0.5
History-aware HPO 0.5

updated every 10 episodes
automated-tuning

Table 1: Initial configuration for experiment 1

¢ History-Aware HPO vs traditional HPO: In order to eval-
uate the proposed approach, we benchmarked it with tradi-
tional HPO techniques. Specifically, the previous mentioned
(see Section 2), grid search and random search and BO. For
the seek of the experiment, the hyperparameter tuning was
performed uusing Optuna hyperpameter tool [1] using these
HPO techniques and during the training process. Thus dur-
ing a single agent’s lifetime different of the common use
of these approaches that requires the analysis on multiple
agent’s lifetimes [29]. In this context, the initial hyperpa-
rameters for each approach is described in table 1. From the
literature [17, 26], commonly used values for the discount
factor are within the range of 0.9 and 0.99. We have included
the manual setting with static discounting factor for com-
parison. For the case of grid search, in order to cover the
hyperparameter-value space, the initial value of y is set to 0.9
and decays over the time with a rate of 0.1. Random search
starts randomly, the history-aware HPO and BO start in the
centre of the value-space.

e History-Aware HPO vs static hyperparameters: A sec-
ond experiment was performed to analyse the impact of our
approach in the performance of the system in comparison
to keeping the hyperparameters static during the training.
For this purpose, we initialised the training round with the
same seeds and compared the reward evolution overtime
for each hyperparameter configuration. The initial values
of the discount factor that conformed the experiment were:
Yo € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

4.3 Experimentation: Setup

In order to test the feasibility of our approach, the history-aware
epsilon-greedy logic for HPO presented in Section 3.2 was imple-
mented using the different components of the proposed framework
of Section 3.1. Accordingly, the process depicted in Fig. 1 is de-
scribed next:

(1) RL algorithm: DQN has been the selected RL approach for the
system under study. The algorithm was extended to send the
made decisions and observations in a trace log to a queue in
a MQTT message broker in JSON format at each simulation
step.

(2) MQTT broker: The open-source Mosquitto? was selected
as communication hub. The different components are sub-
scribed to topics that allow them to send and receive mes-
sages on the network using a publish/subscribe model.

(3) CEP engine: It processes and correlates the trace logs re-
ceived from the RL algorithm with the aim of detecting,

Zhttps://mosquitto.org/

Conference’17, July 2017, Washington, DC, USA

Listing 1: Esper EPL pattern to select when the system is on
an stable condition on a defined time-window

@public @buseventtype @Name("isStableAVG")
insert into isStableAVG
select w.averageWindow as avg,
w.episode as episode,
'CEP' as agent,
CAST(a3.drone_number as INT) as drone_number,
a3.step as step,
a3.gamma as gamma
from pattern [every al = AvgByEpisode —>
a2 = AvgByEpisode —>
a3 = AvgByEpisode —>
w = EpiWinAVG]
where
w.episode = a3.episode and
Math.abs(al.avg-w.averageWindow) < 30 and
Math.abs(a2.avg-w.averageWindow) < 30 and
Math.abs(a3.avg-w.averageWindow) < 30

in real time, the situations of interest for the application
domain. A set of event patterns were implemented in the
selected CEP engine (Esper). Precisely, we have implemented
Equations 4, 5 and 6 using Esper EPL in a hierarchy of event
patterns. Listing 1 shows the implementation of Equation 6
that attempts to detect stable conditions on time windows
of 3 episodes (w = 3) with a thggp1e = 30. Every pattern
AvgByEpisode (which refers to Eq. 3), followed (->) by two
subsequent AvgByEpisode and a EpiWinAVG (which refers
to Eq. 4), is analysed (where statement) in compliance of the
boolean conjunction of Eq. 5. When the condition is met (i.e.
boolean conjunction = True), the engine automatically gen-
erates complex events that collect the required information,
to therefore send the events to the MQTT broker component
for further processing.

(4) Temporal Model: It receives complex events and records
their information as a new version of the model in the TGDB.
Specifically, the Hawk® model indexer was extended with
the capability to subscribe to an MQTT queue and reshape
the information into a model conforming to the metamodel
in Fig. 2. The graph listener is notified when a stable condi-
tion is detected. Next, it performs the required calculations
of Eq. 6 and 7 to provide feedback to the RL algorithm on
either; keeping the hyperparameter configuration or tuning
it towards finding a good solution to Eq. 2. The feedback
provided is recorded as part of the temporal model enabling
the long-term memory needed for further processing, ac-
countability and post-mortem analysis.

As previously mentioned, our implementation decouples the
running RL-system from the HPO process. In that sense, the exper-
iments were performed using two machines dedicated to different

3https://www.eclipse.org/hawk/

Juan Marcelo Parra-Ullauri, Chen Zhen, et al.

Periodic Grid Search —— History-aware epsilon-greedy HPO

—— Periodic Random Search ~ —— Static configuration - DF = 0.9
—— Periodic BO Search

Users Connected

w
o

0 L— T T T T T T T T T T T T T — T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Episode

Figure 3: Comparison of hyperparameter tuning methods in
DON

purposes: one performing the training of the different RL algo-
rithms, and the other running the proposed framework. The RL
algorithms ran on a dedicated ML server with 10 NVIDIA RTX
A6000 48GB GPUs using the ABS simulator, Python 3, Anaconda
4.8.5, matplotlib 3.3.4, numpy 1.19.1, paho-mgqtt 1.5.0, pandas 1.1.3,
and pytorch 1.7.1. The machine running the proposed framework
was a Lenovo Thinkpad T480 with an Intel i7-8550U CPU with
1.80GHz, running Ubuntu 18.04.2 LTS and Oracle Java 1.8.0_201, us-
ing Paho MQTT 1.2.2, Eclipse Hawk 2.0.0, and Esper 8.0.0. The full
implementation can be found in (omitted for double-blind review).

4.4 Evaluation of the results

In this section, we present the evaluation of the results of using
the proposed framework implementing the history-aware epsilon-
greedy logic for HPO. We trained the DQN system under the same
conditions for the different experiments. A total of 20 runs were
conducted.

4.4.1 History-Aware HPO vs traditional HPO. The first experiment
corresponded to a qualitative study of the performance of the ABS
system using the proposed approach comparing against traditional
HPO techniques. Fig. 3 shows the results. As it can be observed,
our history-aware HPO approach (black line) over-performed, in
terms of time to converge and accuracy, the different approaches
obtaining its maximum values from episode 32 onward. The random
search (blue line) fluctuates and its performance is closed with static
configuration (red line). It is interesting to note that grid search
(green line) achieved similar performance. However, the sharp dip at
episode 70 to 80 shows a potential instability. Similarly, BO (green
line) achieves maximum performance in episode 42 however, it
could not recover after trails of sub-optimal hyperparameter values
from episode 71 onwards.

The proposed approach allows us to get more insights about
the HPO process by analysing the history stored in the TGDB in
conformation of metamodel of 2. Fig. 4 (a) depicts the results. The
extracted information shows that the maximum value of our reward
value function R was 727.055 at episode 74 with y=0.204. Therefore,
under the configuration @, (;,«) the optimal found value for the
HPO problem of Eq. 3 is: A* « A(y = 0.204, k).

A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning

510 510
508 508
2 0.6 2 0.6
204 204
202 202
/0.0 ~0.0

, 0 20 40 60 80 100 _ 0 20 40 60 80 100
2 700 8 700
3 600 3 600
= 500 = 500
2 400 2 400
8 300 3 300
£ 200 £ 200
S 100 S 100

0 20 40 60 80 100 0 20 40 60 80 100

Episode Episode

(a) Gamma = 0.5. (b) Gamma = 0.9.

Figure 4: Reward and discount factor evolution, starting at
y = 0.5 and y = 0.9 using history-aware HPO.

4.4.2 History-Aware HPO vs static hyperparameters. The second
experiment included an exhaustive analysis of the performance of
the RL algorithm using different seeds for the discount factor. The
comparison include the analysis of the reward value function R with
and without the proposed approach for each system configuration
@), (y,x)- The boxplots of Fig. 5 display the results. By using the
proposed history-aware HPO (in red) the system was able to reach
greater maximum values (the upper end of the whiskers) for each
configuration. Furthermore, the iterquartile ranges (boxes) in each
case had a greater upper quartile. Regarding to the medians, that
represent the middle of the set, they were also greater for each
case except for y = 0.2 and y = 0.3. This can suggest two things: i)
the optimal values of y is within this range 0.2 < y* < 0.3, which
reinforce the result obtained in experiment 1, and ii) the variance in
the data corresponds to the optimiser exploring the hyperparameter
value-space with probability €. The results showed that by the use
of the approach no outliers that lie on an abnormal distance from
other values in the data set were found.

The best performance of the RL system using the history-aware
HPO approach occurred when the initial value of the discounting
factor was the centre of the hyperparameter value-space, y, = 0.5
with an average of connected users of 636.104 and a median of
702.886. In the same manner, the poorest performance occurred
with y, = 0.9 with an average of 309.818 connected users and
a median of 323.774. As shown in Fig. 4 (b), after exploring the
hyperparameter value-space, the optimiser was going towards the
optimal value of y which is corresponded with the increase of the
reward. Thus, the system would have needed longer to find the
optimal value.

5 DISCUSSION

The results from our conducted experiments showed the feasibility
of the history-aware approach for HPO. Combining CEP and TMs
made us to offer both the short and long term memory required
for hyperparameter tuning with reflective capabilities. The history-
aware epsilon-greedy logic allowed to explore the hyperparameter
value-space with explicit long-term memory to remember good/op-
timal system’s configurations @, (). Our experiments provide
valuable insights into the effects of the tuning of the discount factor
and its influence on the stability of training and overall system
performance (maximised cumulative rewards).

Conference’17, July 2017, Washington, DC, USA

[sStatic Hyperparameters B History-aware HPO

il

O am

Users connected
o

200

100 4

T
0.1 0.2 0.3 04 05 06 07 0.8
Discount factor value

Figure 5: Comparison of history-aware hyperparameter op-
timisation vs static values

The discount factor determines how many future time steps
the agent considers when choosing an action. This value strongly
depends on the environment that software agents are experienced.
In the ABS case study, a discount factor close to 1 allows the agent to
take actions very future oriented. A lower discount factor suggests
that the ABS are more concerned to provide coverage to multiple
users in short term but would introduce uncertainty in the long term.
It is challenging to find the balance between the highest possible
number of connected users in the short term and the long-term
impact, as user behaviour may vary.

The approach has some limitations. Primarily, the optimisation
of multiple hyperparameters in a single run. We have focused our
study on the impact of the discount factor as key element of the
Bellman Equation however, there are other hyperparameters that
may affect the final system performance. Further work will involve
the gradual lifting of these restrictions by allowing the tuning
of multiple hyperparameters using different threads or timelines.
Another limitation of the approach is the definition of stability on
the system which is strongly related to the threshold of stability
and time-window length. This could be problematic in situations
when the R is noisy which could produce that the system never gets
into a stable condition. This could be tackled by analysing different
criteria for stability such as Z-score [2] and the absolute deviation
around the median [11]. Another approach could be introducing a
patience time, e.g. if the system has not entered on a stable condition
for X episodes, force it to explore another A.

6 RELATED WORK

HPO in the RL traditionally used a Delta-Bar-Delta method as
incremental algorithms to tune parameters [14]. However, this
method and its variations were limited to linear supervised learning.
The recent movement is to combine incremental Delta-Bar-Delta
method and Temporal-difference learning [28]. Those methods can
not make tuning hyperparameters online and allow the algorithm
to more robustly adjust to non-stationarity in a problem at the
same time. A variety of techniques exist to combat this recently—
most notably use of a large experience replay buffers or the use
of multiple parallel actors. These techniques come at the cost of
moving away from the online RL problem as it is traditionally
formulated. More sophisticated approaches include Self-Tuning

Conference’17, July 2017, Washington, DC, USA

Actor Critic (STAC) [29] and Sequential Model-based Bayesian
optimisation (SMBO) [5]. However both methods ignored a crucial
issue for RL: the possible non-stationarity of the RL problem induces
a possible non-stationarity of the hyperparameters. Thereby, at
various stages of the learning process, various hyperparameter
settings might be required to behave optimally [30]. Furthermore,
these approaches bases their functionality on multiple trials, thus
multiple agent’s lifetimes different from the present work that
focuses on HPO in a single lifetime.

Moreover, CEP can bring some advantages to ML approaches.
They have been used together in fields such as the financial sec-
tor [13], cybersecurity [24] and Internet of Things [19]. More par-
ticularly, CEP has been used to preprocess the stream of data that
will be provided to the ML classifiers for training and predictive
calculations [13]. More evolved architectures include the use of ML
to find and set event patterns for the detection of complex events,
thus automatising the setup stage of a CEP system [16]. Even more,
some architectures have been developed to automatically update
their event patterns using ML [25]. ML and CEP are also combined
to provide dynamic fault-tolerance support [22].

Recently, CEP has been also integrated with TM to support both
service monitoring and explainable reinforcement learning. Specifi-
cally, in [21], an architecture based on CEP and TM is proposed for
runtime monitoring of comprehensive data streams. This architec-
ture promptly reacts to events and analyses the historic behaviour
of a system. In [21], a configurable architecture combining CEP and
RL allows to keep track of a system’s reasoning over time, to extract
on-demand history-aware explanations, to automatically detect sit-
uations of interest and to real-time filter the relevant points in time
to be stored in a TGDB.

7 CONCLUDING REMARKS AND FUTURE
WORK

Hyperparameter tuning is an omnipresent problem in RL as it
is a key element for obtaining the state-of-the-art performance.
This paper proposes to tackle this issue by integrating CEP and
TMs. We investigated new ways to monitor software agents to
explore their environment and pruning algorithms by automatically
updating hyperparameters using feedback based on the RL agents
historical behaviour. In order to test the feasibility of the approach,
we conducted several experiments comparing the performance
of a DON case study using the proposed approach and different
traditional HPO techniques.

The encouraging results show that the proposed framework com-
bining CEP and TMs and implementing the history-aware epsilon-
greedy logic significantly improved performance compared to tra-
ditional HPO approaches, in terms of reward values and learning
speed. Furthermore, the outcomes from the monitoring process
produce interpretable results easy for a human to understand and
act upon. We have shown how some SE paradigms can be exploited
for the benefit of RL and can be further used for creating account-
ability of RL systems. We believe that the SE and ML communities
should work together to solve the critical challenges of assuring
the quality of ML/RL and software systems in general.

Future work will include the study of the points mentioned in
Section 5 regarding the the limitations of the approach. Further

Juan Marcelo Parra-Ullauri, Chen Zhen, et al.

experiments will also be conducted to analyse the performance of
the approach with other RL methods. Similarly, we will benchmark
the proposed approach with more sophisticated HPO approaches
as the ones mentioned in Section 6.

The feedback obtained from the proposed framework can be
further exploited for example for safe early stopping [9]. Moreover,
by choosing a set of high-level operations from hyperparameter
tuning to algorithm selection set, to guide an agent to perform var-
ious tasks, like remembering history, comparing and contrasting
current and past inputs, and using learning methods to change
its own learning methods, the proposed approach can be consid-
ered a first step towards Meta-Learning [27]. Finally, the obtained
knowledge can be useful to convey this information for different
stakeholders apart from proving feedback which can be another
research direction.

REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2623-2631.

[2] Charles Henry Brase and Corrinne Pellillo Brase. 2013. Understanding basic
statistics. Brooks/Cole Cengage Learning.

[3] Philippe Esling and Carlos Agon. 2012. Time-series data mining. ACM CSUR 45,
1(2012).

[4] Franklin Cardefioso Fernandez and Wouter Caarls. 2018. Parameters tuning
and optimization for reinforcement learning algorithms using evolutionary com-
puting. In 2018 International Conference on Information Systems and Computer
Science.

[5] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. In
Automated machine learning.

[6] Abel Gémez, Jordi Cabot, and Manuel Wimmer. 2018. TemporalEMF: A temporal
metamodeling framework. In International Conference on Conceptual Modeling.

[7] Thomas Hartmann, Francois Fouquet, et al. 2017. Analyzing Complex Data in
Motion at Scale with Temporal Graphs. In Proceedings of SEKE’17.

[8] Hadi S Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. 2019. Hyp-rl: Hyperpa-
rameter optimization by reinforcement learning. arXiv preprint arXiv:1906.11527
(2019).

[9] Koulik Khamaru, Eric Xia, Martin] Wainwright, and Michael I Jordan. 2022.

Instance-Dependent Confidence and Early Stopping for Reinforcement Learning.

arXiv preprint arXiv:2201.08536 (2022).

Rainer Klar, Andreas Quick, and Franz Soetz. 1992. Tools for a Model-driven

Instrumentation for Monitoring. In Proceedings of the 5th International Conference

on Modelling Techniques and Tools for Computer Performance Evaluation.

Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent

Licata. 2013. Detecting outliers: Do not use standard deviation around the

mean, use absolute deviation around the median. Journal of experimental social

psychology (2013).

[12] David C Luckham and Brian Frasca. 1998. Complex event processing in distributed
systems. Computer Systems Laboratory Technical Report CSL-TR-98-754. Stanford
University, Stanford (1998).

[13] Nhan Nathan Tri Luong, Zoran Milosevic, Andrew Berry, and Fethi Rabhi. 2020.

An open architecture for complex event processing with machine learning. In

2020 IEEE 24th International Enterprise Distributed Object Computing Conference.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M

Pilarski. 2012. Tuning-free step-size adaptation. In 2012 IEEE International Con-

ference on Acoustics, Speech and Signal Processing.

Alexandra Mazak, Sabine Wolny, Abel Gémez, Jordi Cabot, Manuel Wimmer, and

Gerti Kappel. 2020. Temporal models on time series databases. J. Object Technol

(2020).

Nijat Mehdiyev, Julian Krumeich, David Enke, Dirk Werth, and Peter Loos. 2015.

Determination of Rule Patterns in Complex Event Processing Using Machine

Learning Techniques. Procedia Computer Science 61 (2015).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature 7540 (2015).

Oliver Moser, Florian Rosenberg, and Schahram Dustdar. 2010. Event driven

monitoring for service composition infrastructures. In International Conference

on Web Information Systems Engineering.

[10

[11

[14

[15

[16

(17

(18

A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning

[19] Guadalupe Ortiz, Jose Antonio Caravaca, Alfonso Garcia-de Prado, Francisco

Chavez de la O, and Juan Boubeta-Puig. 2019. Real-Time Context-Aware Mi-
croservice Architecture for Predictive Analytics and Smart Decision-Making.
IEEE Access (2019).

[20] Juan Marcelo Parra-Ullauri, Antonio Garcia-Dominguez, Juan Boubeta-Puig,

Nelly Bencomo, and Guadalupe Ortiz. 2021. Towards an architecture integrat-
ing complex event processing and temporal graphs for service monitoring. In
Proceedings of the 36th Annual ACM Symposium on Applied Computing. 427-435.

[21] Juan Marcelo Parra-Ullauri, Antonio Garcia-Dominguez, Nelly Bencomo, Chang-

gang Zheng, Chen Zhen, Juan Boubeta-Puig, Guadalupe Ortiz, and Shufan Yang.
2021. Event-driven temporal models for explanations - ETeMoX: explaining
reinforcement learning. Software and Systems Modeling (2021).

Alexander Power and Gerald Kotonya. 2019. Providing Fault Tolerance via
Complex Event Processing and Machine Learning for IoT Systems. In Proceedings
of the 9th International Conference on the Internet of Things (IoT 2019). Association
for Computing Machinery, New York, NY, USA.

Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi, and Paul Griin-
bacher. 2017. A comparison framework for runtime monitoring approaches.
Journal of Systems and Software (2017).

José Roldan, Juan Boubeta-Puig, José Luis Martinez, and Guadalupe Ortiz. 2020.
Integrating Complex Event Processing and Machine Learning: an Intelligent
Architecture for Detecting IoT Security Attacks. Expert Systems with Applications

Conference’17, July 2017, Washington, DC, USA

149 (2020).

Yunhao Sun, Guanyu Li, and Bo Ning. 2020. Automatic Rule Updating based on
Machine Learning in Complex Event Processing. In 2020 IEEE 40th International
Conference on Distributed Computing Systems.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Joaquin Vanschoren. 2019. Meta-learning. In Automated Machine Learning.
Kenny Young, Baoxiang Wang, and Matthew E Taylor. 2018. Metatrace: Online
step-size tuning by meta-gradient descent for reinforcement learning control.
arXiv preprint arXiv:1805.04514 (2018).

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado van
Hasselt, David Silver, and Satinder Singh. 2020. Self-tuning deep reinforcement
learning. arXiv preprint arXiv:2002.12928 (2020).

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp,
Kurtland Chua, Frank Hutter, and Roberto Calandra. 2021. On the importance
of hyperparameter optimization for model-based reinforcement learning. In
International Conference on Artificial Intelligence and Statistics.

Changgang Zheng, Shufan Yang, Juan Marcelo Parra-Ullauri, Antonio Garcia-
Dominguez, and Nelly Bencomo. 2021. Reward-reinforced generative adversarial
networks for multi-agent systems. IEEE Transactions on Emerging Topics in
Computational Intelligence (2021).

	Abstract
	1 Introduction
	2 Background
	2.1 Hyperparameter Optimisation in Reinforcement Learning
	2.2 Temporal Models
	2.3 Event-driven Monitoring

	3 History-Aware Hyperparameter Optimisation for RL
	3.1 A Software Framework combining CEP and TMs for HPO
	3.2 History-aware epsilon-greedy logic for HPO

	4 Experiments and Results
	4.1 System under study: Airbone base stations
	4.2 Experimentation: Scenario
	4.3 Experimentation: Setup
	4.4 Evaluation of the results

	5 Discussion
	6 Related Work
	7 Concluding remarks and future work
	References

